
Revenue sharing on hierarchies

Biung-Ghi Ju∗, Soojeong Jung†, Hokyu Song‡

June 16, 2017

Abstract

We consider a model of joint venture where agents are organized on
a hierarchical network and each agent produces her revenue through
collaborating with her superiors. We study the problem of allocating
the total revenue among the agents. A hierarchy is represented by
a directed tree. We investigate superiors-reallocation-proof allocation
rules that are robust to reallocation of revenues within any coalition
that includes all the superiors of its members. We obtain characteri-
zations of superiors-reallocation-proof allocation rules imposing stan-
dard axioms in the literature of fair allocation theory.

1 Introduction

Hierarchical networks are common in real life. Hierarchies may arise groups
in which agents take different responsibilities. Command or permission struc-
tures also generate hierarchies in groups. Demange [1] provides a rationale
for the prevalence of hierarchies; groups obtain stability by organizing into
hierarchies.

We consider a model of joint venture where agents form a hierarchical
network and each agent produces her revenue through collaborating with her
superiors. Individual revenue is generated not solely by an agent but only
in the presence of her superiors. This can be interpreted as if there is a
permission structure so that superiors supervise subordinates, or at least as
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if superiors offer advice or guidance. Our problem is to allocate the total
revenue among the agents.

The allocation rules of our interest are the family of transfer rules sug-
gested by Hougaard et al. [2] and its asymmetric variants. In transfer rules,
each agent at the bottom of the hierarchy gets a fixed fraction of her revenue
and transfers the rest to her immediate superiors equally. Each other agent
gets the same fraction of collected revenues from her own and her subordi-
nates, and then transfers the remainder to her immediate superiors equally.
Hougaard et al. [2] also characterizes the family of transfer rules.

Hougaard et al. [2] investigate what rules are non-manipulable when a
coalition of an agent and all her superiors can merge into a single representa-
tive agent or when the representative agent can split into the coalition. They
show that such a merging or a splitting cannot increase the payoff under any
transfer rule and moreover, these rules are the only non-manipulable rules
satisfying some other standard axioms.

In this paper we consider a different type of coalitional manipulation,
which enables members to freely reallocate their revenues within the coali-
tion. Non-manipulability by such a reallocation is called reallocation-proofness.
Non-manipulability is a virtue of transfer rules related to the fairness in allo-
cation. If a rule does not have this property, some agents may seek advanta-
geous coalitional manipulation and do not agree to get the payoff allocated
by the rule. Ju [3] characterizes reallocation-proof rules in the setting where
a coalition is made feasible by its connectivity in a network structure. In
our investigation, a coalition can form only if they are connected, and in ad-
dition, it includes all the superiors of its members. This stricter restriction
arises from the hierarchical structure and its nature of directed permission.
Our non-manipulability is called superiors-reallocation-proofness. We offer
new characterization results with superiors-reallocation-proofness. Some ax-
ioms in Hougaard et al. [2] are employed along with standard axioms in the
literature of fair allocation theory.

Types of hierarchies we consider in this paper are extensive enough to
include those represented by a directed tree. Agents do not have only one
immediate superior, but may have multiple immediate superiors as long as
there does not exist any undirected cycle in the hierarchy.

We characterize a family of rules called here the generalized transfer rules.
They are asymmetric variants of transfer rules; two symmetric aspects of
transfer rules are relaxed. First, when each agent gets a share of collected
revenues from her subordinates including herself, she is allowed to take the
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share at her own rate, not necessarily at the same rate as other agents.
Second, when each agent then transfers the rest of revenues to her immediate
superiors, she is allowed to distribute it at different ratio; an immediate
superior may receive more, while another immediate superior may receive
less.

As in Hougaard et al. [2] , the axiomatic approach we take does not pos-
tulate a cooperative game restricted by a permission structure in hierarchy.
We rather require fairness of allocation rules directly from the hierarchical
structures.

2 Model

We consider a problem of allocating revenues generated collectively by a set
of agents through their hierarchical collaboration. Let N = {1, 2, . . . , n} be
the set of agents. These agents form a hierarchy given by a directed tree, that
is, a directed network not containing any undirected cycle. The hierarchy is
represented by a correspondence S : N → 2N that maps each agent i ∈ N
to her immediate superiors S(i) ⊂ N . When agent i has no immediate
superior, that is, S(i) = ∅, agent i is referred to as a top agent. Note that
there can be multiple top players. We say that player j is an immediate
subordinate of player i if i ∈ S(j). For agents i, j ∈ N , denote i a superior
of j, and j a subordinate of i if i = j or there is a finite sequence of agents
(a1, a2, . . . , am) such that a1 = i, am = j, and ak ∈ S(ak+1) ∀k = 1, . . . ,m−1.
Let sp : N → 2N be the correspondence that maps each agent i ∈ N to all
her superior agents (including herself). Let sp0(i) ≡ sp(i) \ {i}. Similarly
let sb : N → 2N be the correspondence that maps each agent i ∈ N to
all her subordinates and sb0(i) ≡ sb(i) \ {i}. Refer to a player who has
no subordinate other than herself as a bottom player. That is, i ∈ N is a
bottom player if sb(i) = {i}. Duplet (N,S) defines a hierarchy. Throughout
the paper, (N,S) is fixed.

We say that a subset of agents T is connected if for every two agents in
T we can find an undirected path between them in the subset. Formally, a
(undirected) path is a finite sequence of different agents (a1, a2, . . . , am) such
that either ak ∈ S(ak+1) or ak+1 ∈ S(ak) holds for all k = 1, . . . ,m− 1. Let
us call this sequence a path from a1 to am, and we say that agent ak is on
the path for every k. The path from a1 to am is unique as the network is a
directed tree. Also note that the path from am to a1 is (am, am−1, . . . , a1).
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For a subset of agents T ⊂ N , it is a (weakly) connected set if for every
i, j ∈ T , we can find a path from i to j such that any agent on the path is a
member of T .

At each position i ∈ N of the hierarchy, agent i together with her superiors
generate revenue ri ∈ R+. Denote the profile of revenues by r = (ri)i∈N . The
problem is to allocate the total revenue

∑
i∈N ri among n agents. Given

a (revenue sharing) problem r, an allocation is a vector x ∈ Rn
+ satisfying∑

i∈N xi =
∑

i∈N ri. Call this condition balance. An allocation rule is a
function f : Rn

+ → Rn
+ associating with each problem r an allocation f(r).

The following notation will be used. Let x ∈ Rn
+ be a vector. For all

T ⊂ N , let x(T ) ≡
∑

i∈T xi and xT ≡ (xi)i∈T . For all i ∈ N , let (x′i, x−i) be
the revenue profile obtained by replacing the ith component xi with x′i.

We now present a family of allocation rules crucial in our investigation.
Under these rules, each agent in the hierarchy keeps a fraction of her revenue
and transfers the rest to her superiors. A simple case of these rules called
here as transfer rules is suggested by Hougaard et al. [2] . To define them
formally, consider first a bottom agent i. She receives a fraction of her revenue
λri, with λ ∈ [0, 1], and allocates the rest (1− λ)ri equally to her immediate
superiors. In the case of agent j with an immediate subordinate, the same
transfer scheme applies to the total of rj and the amount transferred to j
from her immediate subordinates. If j is a top agent, she receives all her
revenue rj together with the amount transferred to her from her immediate
subordinates.

This way, the transfer rule with λ ∈ [0, 1] allocates revenues as follows.
If i ∈ N is a bottom player(sb(i) = {i}) ,

fi(r) = λri

If j ∈ N has one superior other than herself(sb(j) 6= {j}and sp(j) 6= {j}),

fj(r) = λ

(
rj +

∑
l∈N : j∈S(l)

1

|S(l)|
1− λ
λ

fl(r)

)
If k ∈ N is a top player(sp(k) = {k}),

fk(r) = rk +
∑

l∈N : k∈S(l)

1

|S(l)|
1− λ
λ

fl(r)

More precisely, the transfer rule is defined as follows.
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Figure 1: An example of hierarchy.

Definition. [Transfer rule]
An allocation rule is a transfer rule with λ if, for some λ ∈ [0, 1], it holds

that for all r ∈ Rn
+,

if i ∈ N is not a top player,

fi(r) = λ

ri +
∑

j∈sb0(i)

 ∏
l∈sp(j)∩sb0(i)

(1− λ)

|S(l)|

 rj
 ,

and if t ∈ N is a top player,

ft(r) = rt +
∑

j∈sb0(t)

 ∏
l∈sp(j)∩sb0(t)

(1− λ)

|S(l)|

 rj.
We call the transfer rule with λ = 0 as the full transfer rule and the one

with λ = 1 as the zero-transfer rule.

Example 1. Consider a set of agentsN = {1, 2, 3, 4, 5, 6} with r = (4, 1, 11, 3, 6, 9),
and S(3) = {1, 2}, S(5) = {2}, S(4) = {3}, S(6) = {5}. The hierarchy is
represented as in Figure 1.

The transfer rule with λ allocates f4(r) = 3λ, f6(r) = 9λ, f5(r) = 6 +
3
2
(1−λ), f3(r) = λ(11+ 3

2
(1−λ)), f1(r) = 4+ 1

2
(1−λ)(11+ 3

2
(1−λ)), f2(r) =

1 + 1
2
(1−λ)(11 + 3

2
(1−λ)) + 9(1−λ). When λ = 1/3, the allocation vector is

f(r) = (8, 11, 4, 1, 7, 3). The full transfer rule allocates (41
4
, 65

4
, 0, 0, 15

2
, 0) and

the zero-transfer rule allocates (4, 1, 11, 3, 6, 9).

Another family of allocation rules is a generalized version of the family of
transfer rules. Generalized transfer rule allows each agent to transfer different
share of collected revenues from its subordinates. Also, the amount of surplus
transfered to an agent’s immediate superiors may differ across them.
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Definition. [Generalized Transfer rule]
An allocation rule is a generalized transfer rule with λ and µ if, for some

λ ≡ (λi)i∈N\T where T is a set of top players and λi ∈ [0, 1] for all i, and

µ ≡ (µi)i∈N\T where µi = (µpi )p∈S(i) ∈ R|S(i)|+ satisfies µpi ≥ 0 for all p ∈ S(i)
and

∑
p∈S(i) µ

p
i = 1, it holds that for all r ∈ Rn

+,
if i ∈ N is not a top player,

fi(r) = λi

ri +
∑

j∈sb0(i)

 ∏
l∈sp(j)∩sb0(i)

(1− λl)µp(l,i)l

 rj
 ,

where p(l, i) is defined as the immediate superior of l that lies between l and
i.

If t ∈ N is a top player,

ft(r) = rt +
∑

j∈sb0(t)

 ∏
l∈sp(j)∩sb0(t)

(1− λl)µp(l,i)l

 rj.
Let us revisit the hierarchy in Example 1. The set of top players is

T = {1, 2, 5}. When λ3 = 3
5
, λ4 = 1

3
, λ6 = 2

3
so that λ = (3

5
, 1
3
, 2
3
), and

µ1
3 = 3

7
, µ2

3 = 4
7
, µ3

4 = 1
3
, µ5

4 = 2
3
, µ2

6 = 1, so that µ = (3
7
, 4
7
, 1
3
, 2
3
, 1), the

generalized transfer rule with λ and µ allocates f(r) = (6, 20
3
, 7, 1, 22

3
, 6).

Note that generalized transfer rules with λ and µ are transfer rules when
for all i ∈ N \ T , λi = λ̄ and µpi = 1

|S(i)| for all p ∈ S(i).

3 Axioms

In this section, we introduce axioms. The first one prevents advantageous
coalitional manipulation. It requires that any feasible coalition should not
gain from reallocating revenues within the coalition. To be concrete, the
total payoff allocated to the coalition cannot change by any reallocation of
revenues among its members. In the hierarchy, an agent generates revenue by
collaborating with its superiors. Superiors supervise subordinates and take
responsibility of their performances. Hence, coalition is feasible only if it is
connected, and contains all superiors of each member.

Let F(N,S) denote the set of feasible coalitions, all connected sets that
contain all superiors of its members. Formally, F ∈ F(N,S) if F ⊂ N is
connected and ∀j ∈ F, sup(j) ⊂ F .
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Definition. [Superiors-Reallocation-Proofness, SRP]
An allocation rule f satisfies superiors-reallocation-proofness if, for all

r ∈ Rn
+, all r′ ∈ Rn

+, and all F ∈ F(N,S), it holds that if r(F ) = r′(F ) and
rN\F = r′N\F , then ∑

i∈F

fi(r) =
∑
i∈F

fi(r
′).

The next axiom states that any top player’s revenue is irrelevant for the
payoff of all other players. It is exactly the same as the one in Section 4 of
Hougaard et al. [2] .

Definition. [Highest Rank Revenue Independence, HRRI] An allocation rule
f satisfies highest rank revenue independence if, for all r ∈ Rn

+, all agent i ∈ N
such that S(i) = ∅, and all r̂i ∈ R+, it holds that

fN\{i}(r) = fN\{i}(r̂i, r−i).

The following property states that for each agent, only the revenues of
her superiors and subordinates is relevant.

Definition. [Independence of Irrelevant Agents, IIA] An allocation rule f
satisfies independence of irrelevant agents if, for all i ∈ N , all r ∈ Rn

+, and

all r̂ ∈ R|N\(sp(i)∪sb(i))|+ , it holds that

fi(r) = fi(r̂, rsp(i)∪sb(i)).

The family of generalized transfer rules, and thus the family of transfer
rules, satisfy all three axioms above.

We observe that if agent i is an immediate superior of agent j, removing
the edge between them leaves us with two components.1 N separates into
two connected components, one including j and the other one including i.
Pick the set of agents in the connected component including j, and denote
it by Cj,i. Similarly name the subset of agents linked to i as Ci,j. Surely
Cj,i ∪ Ci,j = N . For example, see the hierarchy in Figure 2a. If we remove
the edge between agent 2 and 3, two connected components consisting N are
C2,3 = {2, 5, 6} and C3,2 = {1, 3, 4} as we observe in Figure 2b .

Consider an agent i and her immediate subordinate j. The next axiom
says that if agents linked to j(members of Cj,i) transfer any surplus from

1Let us say a set of agents C ⊂ A is a (connected) component of a bigger set of agents
A if C is connected, and C ∪ {i} is not connected for any i ∈ A \ C.
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Figure 2: (a) An example of a hierarchy (N,S). (b) The edge between agent
2 and 3 is removed and N separates into two components.

the component to i, and generate zero revenue instead, then the payoffs of
agents linked to i(members of Ci,j) remain unchanged. This property is very
similar to that in Section 4 of Hougaard et al. [2] . The difference is that in
this paper the set of agents is fixed therefore the revenue of leaving agents
are nulled instead.

Definition. [Component Null-Consistency, CNC] An allocation rule f satis-
fies component null-consistency if, for all r ∈ Rn

+, all i ∈ N , and all p ∈ S(i),
if r′ is defined as

r′j =


rj +

∑
k∈Ci,p

(rk − fk(r)), for j = p.

0, for j ∈ Ci,p.
rj, otherwise.

then it holds that
fCp,i

(r) = fCp,i
(r′).

The following is a standard axiom.

Definition. [Scale Invariance, SI] An allocation rule f satisties scale invari-
ance if, for all r ∈ Rn

+, and all α > 0, it holds that

f(αr) = αf(r).

Note that the two families of generalized transfer rules and transfer rules
satisfy component null-consistency and scale invariance.

We next consider two symmetry axioms. First, for a given agent i, con-
sider the ith unit vector, (1, 0−i). The axiom requires that every agent i ∈ N
should get the same payoff when the revenue profile is ith unit vector.
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Definition. [Unit Revenue Symmetry, URS] An allocation rule f satisfies
unit revenue symmetry if, for all r ∈ Rn

+, and all i, j ∈ N , when both are not
top players, it holds that

fi(1, 0−i) = fj(1, 0−j).

For the second one, consider an agent i, and her immediate superiors p
and p′ with identical revenues. Suppose that all agents in Cp,i except p have
zero revenue, and all agents in Cp′,i except p′ have zero revenue too. Then
the axiom says that the payoff of the two immediate superiors are the same.

Definition. [Superiors Symmetry, SS] An allocation rule f satisfies superiors
symmetry if, for all r ∈ Rn

+, all i ∈ N , and each pair p, p′ ∈ S(i), it holds
that if rj = 0 for all j ∈ Cp,i \ {p} and j ∈ Cp′,i \ {p′}, and rp = rp′ , then∑

l∈Cp,i

fl(r) =
∑
l∈Cp′,i

fl(r).

The two symmetries help us pin down the family of generalized transfer
rules to the family of transfer rules. The last axiom states that agents with
zero revenue gets zero payoff.

Definition. [No Award for Null, NA] An allocation rule f satisfies no award
for null if, for all r ∈ Rn

+, and all i ∈ N , it holds that if ri = 0, then

fi(r) = 0.

The zero-transfer rule satisfies this property whereas the family of transfer
rule does not. A top player, for example, earns positive payoff if the transfer
rate λ is positive and at least one of her subordinates creates positive revenue.

The followings are two examples of allocation rules that satisfy superiors-
reallocation-proofness.

Example 2. Equal division rule fi(r) = 1
N
r(N) for every i ∈ N satisfies

SRP, SI, URS. It does not satisfy HRRI, IIA, CNC, SS, NA.

Example 3. Any agent who is not a top player gets fi = λri and the top
players that are superiors of i shares the rest, (1−λ)ri. Assume they share it
equally. This rule satisfies SRP, HRRI, IIA, SI, URS, SS. It does not satisfy
CNC, NA.
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4 Results

We will now give a representation of rules satisfying superiors-reallocation-
proofness, highest rank revenue independence, and independence of irrelevant
agents. To that end, let us start with new notations. For a set of agents S,
let sb0(S) ≡ {i /∈ S : i ∈ sb(j) for some j ∈ S}. That is, an agent belongs to
sb0(S) when she is not a member of S but is a subordinate of some member of
S. Proposition 1 states that an allocation rule satisfies SRP, HRRI, and IIA if
and only if every agent’s payoff depends only on revenues of its subordinates.

Proposition 1. Let f be an allocation rule. The following are equivalent.
1. The rule f satisfies Superiors-Reallocation-Proofness, Highest Rank

Revenue Independence, and Independence of Irrelevant Agents.

2. For all F ∈ F(N,S), there exists a nonnegative function gF : R|sb
0(F )|

+ →
R+ such that for all r ∈ Rn

+,∑
i∈F

fi(r) = T F (r(F ), rN\F ) = r(F ) + gF (rsb0(F )).

3. For all i ∈ N , there exists a nonnegative function hi : R|sb(i)|+ → R+

such that for all r ∈ Rn
+,

fi(r) = hi(rsb(i)).

Proof. (1⇒ 2) For a fixed subset of agents F ∈ F(N,S), let T be the set of
all top players in F . Let r ∈ Rn

+ be arbitrarily given. By HRRI, for every t ∈
T , fi(r) = fi(0, r−t) for all i 6= t. By balance, we have ft(r) = rt + ft(0, r−t)
for all t ∈ T . Then again by HRRI, the sum of values members of F get is∑
i∈F

fi(r) =
∑
t∈T

ft(r) +
∑
i∈F\T

fi(r) = r(T ) +
∑
t∈T

ft(0, r−t) +
∑
i∈F\T

fi(0T , rN\T ).

Meanwhile, by IIA, we know that ft(0, rN\{t}) = ft(0N\sb0(t), rsb0(t)) holds
∀t ∈ T . This is because for a top player, when its own revenue is fixed as
zero, only the revenues of its subordinates matter. Similarly, for i ∈ F \ T ,
fi(0T , rN\T ) = fi(0T∪(N\(sp(i)∪sb(i))), r(sp(i)\T )∪sb(i)) holds. We note that for any
member of F that is not a top player, all her superiors and subordinates
are included in the collection of each member of T ’s subordinates. That is,
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∀i ∈ F \T , (sp(i)\T )∪sb(i) ⊂ ∪t∈T sb0(t). Then, the sum can be represented
as ∑

i∈F

fi(r) = r(T ) +GF (r∪t∈T sb0(t))

where GF is a nonnegative function defined as

GF (r∪t∈T sb0(t)) =ft(0N\sb0(t), rsb0(t))+∑
i∈F\T

fi(0T∪(N\(sp(i)∪sb(i))), r(sp(i)\T )∪sb(i)).

Now let r′ be such that r′F\T = 0, r′(T ) = r(F ), and r′N\F = rN\F . By

SRP, r(T ) + GF (r∪t∈T sb0(t)) = r′(T ) + GF (r′∪t∈T sb0(t)). Then because r(T ) =

r(F )− r(F \ T ) and r′(T ) = r(F ),

GF (r∪t∈T sb0(t))− r(F \ T ) = GF (r′∪t∈T sb0(t)).

We observe ∪t∈T sb0(t) = (F \T )∪sb0(F ), and sb0(F )∩F = ∅. Then it holds
that

GF (r∪t∈T sb0(t))− r(F \ T ) = GF (0F\T , r
′
sb0(F )) = GF (0F\T , rsb0(F )).

Let gF (rsb0(F )) = GF (0F\T , rsb0(F )) and we are done.
(2⇒ 3) Let r be arbitrarily given. If i ∈ N is a top player, let F = {i}.

By 2, fi(r) = ri + g{i}(rsb0(i)). Define hi(rsb(i)) = ri + g{i}(rsb0(i)) and we are
done.

Otherwise, assume that i ∈ N is not a top player. Let P ≡ ∪p∈S(i)Cp,i.
Then fi(r) can be represented as a difference using sum over sets.

fi(r) =
∑

l∈{i}∪P

fl(r)−
∑
p∈S(i)

∑
l∈Cp,i

fl(r)

From 2 this is written as

fi(r) = ri + r(P ) + g{i}∪P (rsb0({i}∪P ))−
∑
p∈S(i)

[r(Cp,i) + gCp,i(rsb0(Cp,i))],

which reduces to

fi(r) = ri + g{i}∪P (rsb0({i}∪P ))−
∑
p∈S(i)

gCp,i(rsb0(Cp,i)).
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Observe that sb0(Cp,i) = {i} ∪ sb0(i) = sb(i) for all p ∈ S(i), and sb0({i} ∪
P ) = sb0(i). Then we have

fi(r) = ri + g{i}∪P (rsb0(i))−
∑
p∈S(i)

gCp,i(rsb(i)).

Because the right hand side depends only on rsb(i), defining hi(rsb(i)) = ri +
g{i}∪P (rsb0(i))−

∑
p∈S(i) g

Cp,i(rsb(i)) ends the proof.

(3 ⇒ 1) HRRI and IIA are immediately verified. For SRP, let F ∈
F(N,S) and r ∈ Rn

+ be arbitrarily given. In addition, let r′ ∈ Rn
+ be such

that r′(F ) = r(F ), and r′N\F = rN\F . If i ∈ N \ F , then i is linked to a
subordinate of F .

More precisely, let us define the immediate subordinate set for F as:
K(F ) = {k ∈ N : k /∈ F, sp(p) ⊂ F for some p ∈ S(k)}.2 An agent k
is a member of K(F ) when k is not a member of F but is an immediate
subordinate of a member of F . If i ∈ N \F , then i ∈ Ck,q for some k ∈ K(F )
and q ∈ S(k) ∩ F . It follows that sb(i) ⊂ N \ F . From 3, we know that this
implies fi(r) = fi(r

′) for all i ∈ N \ F . Therefore, by balance
∑

l∈F fl(r) =∑
l∈F fl(r

′).

Because a generalized transfer rule allocates each agent the value that
only depends on revenues of her own and her subordinates, it is now clear
that generalized transfer rules satisfy SRP, HRRI and IIA.

The following result is a characterization of the family of generalized
transfer rules.

Proposition 2. An allocation rule f satisfies Superiors-Reallocation-Proofness,
Highest Rank Revenue Independence, Independence of Irrelevant Agents, Com-
ponent Null-Consistency, and Scale Invariance if and only if it is a general-
ized transfer rule.

Proof. If part is easy to see. Let f be a generalized transfer rule with λ
and µ. Since a generalized transfer rule allocates each agent the value that
depends only on revenues of her own and her subordinates, by Proposition 1,
it satisfies SRP, HRRI and IIA. SI is immediately verified. For CNC, let i ∈ N
be a player with at least one immediate superior and let p ∈ S(i). Given
r ∈ Rn

+, define x ≡ f(r) and let r′ ∈ Rn
+ be such that r′p = rp+r(Ci,p)−x(Ci,p),

2This K set is similar to that in the proof of theorem 1 in Demange [1].
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r′j = 0 for j ∈ Ci,p, and r′j = rj otherwise. For a generalized transfer rule,

r(Ci,p)− x(Ci,p) =
∑

k∈sb(i)

[∏
l∈sp(k)∩sb(i)(1− λl)µ

p(l,p)
l

]
rk. Then

fp(r
′) = λp

[
r′p +

∑
k∈sb0(p)

[∏
l∈sp(k)∩sb0(p)(1− λl)µ

p(l,p)
l

]
r′k

]
= λp

[
rp +

∑
k∈sb(i)

[∏
l∈sp(k)∩sb(i)(1− λl)µ

p(l,p)
l

]
rk

]
+λp

[∑
k∈sb0(p)\Ci,p

[∏
l∈sp(k)∩sb0(p)(1− λl)µ

p(l,p)
l

]
rk

]
= λp

[
rp +

∑
k∈sb0(p)

[∏
l∈sp(k)∩sb0(p)(1− λl)µ

p(l,p)
l

]
rk

]
= fp(r).

Therefore all agents in Cp,i get the same value too.
For only if part, let f be an allocation rule that satisfies SRP, HRRI, IIA,

CNC and SI. Let T be the set of top players. Define λ and µ as follows:
λi ≡ fi(1, 0−i) for each i ∈ N \ T , and

µpi ≡

{∑
k∈Cp,i

fk(1,0−i)

1−λi , if λi 6= 1.
1
|S(i)| , if λi = 1.

for each i ∈ N \ T and each p ∈ S(i). Clearly 0 ≤ λi ≤ 1 and 0 ≤ µpi ≤ 1
holds for such i and p. Also we observe that

∑
p∈S(i) µ

p
i = 1 holds for each i.

If λi = 1, there is nothing to show. If λi 6= 1,
∑

k∈Cp,i
fk(1, 0−i) = µpi (1− λi)

holds.3 By balance,
∑

p∈S(i)
∑

k∈Cp,ifk(1,0−i)
+fi(1, 0−i) = 1 holds because

fj(1, 0−i) = 0 for each j ∈ Cb,i for every immediate subordinate b of i. By
substituting, the equality is rewritten as (1 − λi)

∑
p∈S(i) µ

p
i + λi = 1 which

reduces to
∑

p∈S(i) µ
p
i = 1.

We claim that f is a generalized transfer rule with λ and µ. Fix r ∈ Rn
+.

If i ∈ N is a bottom player, by proposition 1, her payoff depends only
on her revenue. Then fi(r) = fi(ri, 0−i) = rifi(1, 0−i) = λiri by SI. For
p ∈ S(i), let r̂ = (ri, 0−i), and x = f(ri, 0−i). Then r̂(Ci,p) = ri. By balance
and SI, ri = x(Cp,i) + x(Ci,p) = µpi (1 − λi)ri + x(Ci,p). Therefore we have
r̂(Ci,p)− x(Ci,p) = µpi (1− λi)ri for every p.

Now we will show that if for an agent i ∈ N who is neither a bottom
player nor a top player, if the following two statements hold,

1. For each j ∈ sb0(i), fj(r) is the payoff from the generalized transfer
rule with λ and µ.

3Note that this equality also holds even when λi = 1 because both sides equal zero.
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2. For each j ∈ sb0(i), let r̃ = (rsb(j), 0N\sb(j)) and y = f(r̃). For each
q ∈ S(j),

r̃(Cj,q)− y(Cj,q) =
∑
k∈sb(j)

 ∏
l∈sp(k)∩sb(j)

(1− λl)µp(l,q)l

 rk (1)

then the followings hold.
1. fi(r) is the payoff from the generalized transfer rule with λ and µ.
2. let r̂ = (rsb(i), 0N\sb(i)) and x = f(r̂). For each p ∈ S(i),

r̂(Ci,p)− x(Ci,p) =
∑
k∈sb(i)

 ∏
l∈sp(k)∩sb(i)

(1− λl)µp(l,p)l

 rk.
Assume that the first two statements hold, and let B be the set of imme-

diate subordinates of i. Let r̂ = (rsb(i), 0N\sb(i)) and x = f(r̂). Then

fi(r) = fi(r̂) = fi(ri +
∑
b∈B

(r̂(Cb,i)− x(Cb,i)), 0−i) (2)

holds by CNC. For b ∈ B, let r̃ = (rsb(b), 0N\sb(b)) and y = f(r̃). Then
r̂(Cb,i) = r̃(Cb,i), and since an agent’s payoff depends only on revenues of her
subordinates, x(Cb,i) = y(Cb,i).

4 By (1) and SI, (2) equals

fi(r) =

ri +
∑
b∈B

∑
k∈sb(b)

 ∏
l∈sp(k)∩sb(b)

(1− λl)µp(l,i)l

 rk
 fi(1, 0−i). (3)

Because λi = fi(1, 0−i), this is rewritten as

fi(r) = λi

ri +
∑

k∈sb0(i)

 ∏
l∈sp(k)∩sb0(i)

(1− λl)µp(l,i)l

 rk


which proves the first part.
For the second part, let us compute r̂(Ci,p) − x(Ci,p) for every p ∈ S(i).

Obviously r̂(Ci,p) = (sb(i)) and by balance, r(sb(i)) = x(Cp,i)+x(Ci,p) holds.
By CNC and SI,

4If l ∈ Cb,i is not a superior of b, xl = fl(0N ) = 0 because sb(i) ∩ sb(l) = ∅.
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x(Cp,i) =
∑

l∈Cp,i
fl(ri +

∑
b∈B(r̂(Cb,i)− x(Cb,i), 0−i)

=
[
ri +

∑
k∈sb0(i)

[∏
l∈sp(k)∩sb0(i)(1− λl)µ

p(l,i)
l

]
rk

]
µpi (1− λi).

Therefore we have r̂(Ci,p)−x(Ci,p) =
∑

k∈sb(i)

[∏
l∈sp(k)∩sb(i)(1− λl)µ

p(l,p)
l

]
rk.

By the above argument, we can sequentially show that for agents that
are not top players, f gives the payoff from the generalized transfer rule with
λ and µ. What remains is to verify the statement also holds for top players.
Let i ∈ N be a top player. Following the argument above similarly, we can
reach the equality (3). When i is a top player, fi(0−i, 1) = 1 by HRRI. Then,

fi(r) = ri +
∑

k∈sb0(i)

[∏
l∈sp(k)∩sb0(i)(1− λl)µ

p(l,i)
l

]
rk and we are done.

If we in addition add the two symmetries, the family of transfer rules is
singled out from the family of generalized transfer rules.

Proposition 3. An allocation rule f satisfies Superiors-Reallocation-Proofness,
Highest Rank Revenue Independence, Independence of Irrelevant Agents, Com-
ponent Null-Consistency, Scale Invariance, Superior Symmetry, and Unit
Revenue Symmetry if and only if it is a transfer rule.

Proof. For if part, it suffices to check that a transfer rule with λ satisfies
SS and URS, and both are straightforward. For only if part, let f be an
allocation rule that satisfies all seven axioms. By Proposition 2, f is a gener-
alized transfer rule. For i ∈ N that is not a top player, since λi is defined as
λi ≡ fi(0−i, 1), by URS λi = λ for all such i. Next, given i ∈ N , and a given
pair p, p′ ∈ sp(i), suppose that r is such that rj = 0 for all j ∈ Cp,i \ {p}
and j ∈ Cp′,i \ {p′}, and rp = rp′ . Because µi,p is defined as to satisfy∑

l∈Cp,i
fl(0−i, 1) = µi,p(1 − λ), by SS, µi,p = µi,p′ should hold for all such i

and pair p, p′ ∈ sp(i). Therefore µi,p = 1
|S(i)| for all i and p ∈ S(i).

The last result offers a characterization of zero-transfer rules. The no
award for null axiom together with superiors-reallocation-proofness and high-
est revenue independence is strong enough to allow us drop three axioms,
independence of irrelevant agents, component null consistency, and scale in-
variance.

Proposition 4. An allocation rule f satisfies Superiors-Reallocation-Proofness,
Highest Rank Revenue Independence, and No award for Null if and only if it
is the zero-transfer rule.
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Proof. Apparently, the zero-transfer rule satisfies all three axioms. For only
if part, let i ∈ N and r ∈ Rn

+ be fixed. If i is a top player, we claim that
fi(r) = ri. Note that by HRRI, fj(r) = fj(0, r−i) for all j 6= i. By balance,
two equalities

∑
l∈N fl(r) = r(N) and

∑
l∈N fl(0, r−i) = r(N) − ri hold.

Finally, fi(r) = ri + fi(0, r−i) = ri holds by NA.
If i is not a top player, we claim that fi(r) = ri holds when fj(r) = rj

holds for every j ∈ sp0(i). First, note that there must be at least one top
player t ∈ sp(i). Let r′ be such that r′t = r(sp(i)), rj = 0 for j ∈ sp(i) \
{t}, and rN\sp(i) = r′N\sp(i). Because sp(i) ∈ F(N,S), and f satisfies SRP,

r(sp0(i))+fi(r) = r′(sp0(i))+fi(r
′). By NA, then r(sp0(i))+fi(r) = r(sp(i))

holds. Therefore, we get fi(r) = ri.
Now we are ready to show that fi(r) = ri holds for every i that is not a

top player. For given i, if all superiors of i other than herself are top players,
that is, i is in the second position from the top, then fi(r) = ri. If every
superior of i other than herself is either a top player or in the second position
from the top, then again fi(r) = ri holds. Repeatedly, we can show that
fi(r) = ri holds for every i wherever i lies in the hierarchy.

5 Conclusion

In a revenue sharing model with a hierarchy, transfer rules and their asym-
metric multiple-parameter extensions comprise the family of generalized trans-
fer rules. We offer a characterization of this family with superiors-reallocation-
proofness and some other axioms. As a corollary, we obtain an alternative
characterization of transfer rules suggested by Hougaard et al. [2] .

Similar results establish for hierarchies where each agent has a single
immediate superior. For these restricted set of hierarchies, the definition of
reallocation-proofness simplifies, and independence of irrelevant agents is no
longer in need for characterization.
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